Wednesday, April 30, 2014

The Working Of Resistance Temperature Device

By Tracie Knight


Temperature is measured using different methods depending on the environment. RTD or Resistance temperature device is based on the scientific fact that changing the temperature of a conductor will affect its resistance. The flow of electric current as a result of heating or cooling is used in calibrating the devices. The principle of correlation is used with a great deal of standardization.

Platinum is a common metal because it displays a constant reaction over a wider range of change in heat. This gives an incredible accuracy level which is important for industrial processes. Temperature sensitivity is likely to affect the results of a production process.

Heat is a vital element in processing and extraction of industrial products. Sensitivity to heat changes and response speed are important in achieving desired results. The metals must be studied carefully alongside the environment where the RTDs will be used. Sending the right information or signal to the control tower ensures that accurate steps are taken. This will prevent compromise on the processes.

The industries that benefit from this technology include manufacturers of appliances, automotive industry, control sections and HVAC. Production plants with measuring and testing units need to constantly monitor the temperatures. A higher level of consistency and accuracy is required to achieve desired results. Common metals for this purpose include copper, nickel and platinum.

The range of heat is important in determining the element to be used. Different industrial processes depend on the ranges to determine the products being extracted. It means that the element in use must not be distorted by high temperatures or be made to malfunction through freezing.

RTDs face the challenge of inconsistency when exposed to changing temperatures in a heating cycle. Conductors are damaged or have their properties altered at 660 degrees Celsius. They result in dangerous inconsistency. The conductors are easily contaminated by compounds generated because of heat. The impurities fall off from the sheath.

Impurities found at boundaries and changing temperatures have a significant effect on the behavior of conductors in RTDs. This has been clearly noted when it is below 270 degrees or 3 Kelvin. The elements used have very few phonons which explains their behavior. This affects their sensitivity to slight changes in temperature.

The challenges posed by the use of RTDs include accuracy when converting the readings. The relationship between resistance and temperature is a delicate one and easily affected by other conditions. Sensitivity changes depending on heat. This is likely to give erroneous results.

Exposing conductors to continuous heat is likely to alter their properties. This leads to inconsistencies during a thermal cycle. This is defined as hysteresis and threatens to push RTDs out of some operations. It also affects their sensitivity thus limiting their use. The conductors, however, respond well to lower temperatures.

Interference from the sheath and impurities on the device cause loss of heat. This affects the accuracy of such devices. There is a possibility of current flowing through the conductor from other sources. Other factors that affect accuracy include the number of wires used as conductors. The response time for these devices is not satisfactory in some instances.




About the Author:



No comments:

Post a Comment